
 1

Performance evaluation of EPCglobal Gen 2 protocol
in wireless channel

Jae-Ryong Cha and Jae-Hyun Kim

School of Electrical and Computer Engineering
Ajou University, Suwon, Korea

E-mail: builder@ ajou.ac.kr and jkim@ajou.ac.kr

Abstract
1Radio frequency identification(RFID) system which is a simple
form of ubiquitous sensor networks that are used to identify
physical objects permits remote, non-line-of-sight, and
automatic reading. In RFID system, when a reader sends the ID
request command, if there are more than two tags’ responses,
their responses will collide on the RF communication link, and
thus can not be received by the reader. An effective system must
avoid this collision by using the anti-collision algorithm.

In this paper, we focus on the performance evaluation of
EPCglobal Generation 2 protocol from the viewpoint of the anti-
collision algorithm in an erroneous environment.

Introduction
Reliable identification of multiple objects is especially
challenging if any objects are present at the same time. Several
technologies are available, but they all have limitations. For
example, bar code is the most pervasive technology used today,
but reading them requires a line of sight between the reader
device and the tag, manual, and close-ranging scanning. But
Radio frequency identification(RFID) system which is a simple
form of ubiquitous sensor networks that are used to identify
physical objects permits remote, non-line-of-sight, and
automatic reading. Instead of sensing environmental conditions,
RFID system identifies the unique tags’ ID or detailed
information saved in them attached to objects[1],[2].

Passive RFID system generally consists of a reader and many
tags. A reader interrogates tags for their ID or detailed
information through an RF communication link, and contains
internal storage, processing power, and so on. Tags get
processing power through RF communication link from the
reader and use this energy to power any on-tag computations. A
reader in RFID system broadcasts the request message to the

1 This work was supported by the second stage of Brain Korea 21 (BK21) Project
in 2006.
This research is partially supported by the Ubiquitous Autonomic Computing
and Network Project, the Ministry of Science and Technology(MOST) 21st
Century Frontier RD Program in Korea.

tags. Upon receiving the message, all tags send the response
back to the reader. If only one tag responds, the reader receives
just one response. But if there is more than one tag response,
their responses will collide on the RF communication channel,
and thus cannot be received by the reader. This generally is
referred to as "Tag-collision" problem. An effective system must
resolve this problem by using the anti-collision algorithm
because the ability to identify many tags simultaneously is
crucial for many applications [1]-[4].

In this paper, we focus on the performance evaluation of
EPCglobal Generation 2(Gen 2) protocol which is a single
global protocol for passive RFID system in ultra high frequency
(UHF) band. For the simulator, all node models and process
models were newly built based on the Gen 2 protocol. We also
propose two scenarios using QueryAdjust command and
QueryRep command when the collision occurs.

 This paper is organized as follows. In section II we give some
general insights on the Gen 2 protocol and in section III we
describe our proposed scenarios. In section IV, we describe our
OPNET Gen 2 model and section V shows the bit error model of
our simulation. In section VI, we present simulation results and
conclusions are given in section VII.

EPCglobal Gen 2 Protocol Overview
In this section we give a brief overview of Gen 2 protocol. In
Gen 2 protocol, readers manage tag populations using the three
operations shown in Figure 1. Each of these operations
comprises one or more commands. The operations are defined as
follows:

a) Select : The process by which a reader selects a tag
population for inventory and access. Readers may use
one or more Select commands to select a particular tag
population prior to inventory.

b) Inventory : The process by which a reader identifies

tags. A reader begins an inventory round by

 2

transmitting a Query command in one of four sessions.
One or more tags may reply. The reader detects a
single tag reply and requests the protocol control(PC),
electronic product code(EPC), and cyclic redundancy
check(CRC-16) from the tag. An inventory round
operates in one and only one session at a time.

c) Access : The process by which a reader transacts

with(reads from or writes to) individual tags. An
individual tag must be uniquely identified prior to
access. Access comprises multiple commands.

Arbitrate

 Inventory

 Access

Reader Tags

Ready

Acknowledged

Reply

Secured

Open

State Select

Killed

Figure 1. Reader/tag operations and tag state

In this paper, we consider the Selection process and Inventory
process for tag identification.

Figure 2 shows the state diagram of Gen 2 protocol for the
Inventory process. For tag reading, Gen 2 uses several inventory
command sets which include Query, QueryAdjust, QueryRep,
ACK, and NAK. The Query command initiates an inventory
round and decides which tags should participate in the round
(where "inventory round" is defined as the period between
successive Query commands). The Query command contains a
slot-count parameter Q. Upon receiving a Query command,
participating tags pick a random value in the range (0, 2Q-1) and
load this value into their SC (slot counter). Tags that pick a zero
shall transition to the Reply state and reply immediately. Tags
that pick a nonzero value transition to the Arbitrate state and
await a QueryAdjust or QueryRep command. Assuming that a
single tag replies, the algorithm proceeds as follows:

a) The tag backscatters a 16 bit random number(RN16) as it
enters Reply state.

b) The reader acknowledges the tag with an ACK containing
this same RN16.

c) The acknowledged tag transitions to the Acknowledged
state, backscattering its PC, EPC, and CRC-16.

d) The reader issues a QueryAdjust or QueryRep, causing the
identified tag to invert its inventoried flag (i.e. A→B or B→
A) and transition to the Ready state, and potentially causing
another tag to initiate a query-response dialog with the reader,
starting in step (a), above.

Ready

Arbitrate

Reply

Acknowledged

Power-up and ~killed

CMD : Select
Action : Return to ready
Reply : None.

CMD : Query
Auction : New round
Reply : None

CMD : All other
Action : Remain in ready
 Reply : None

CMD : Select
Action : Return to ready
Reply : None.

CMD : Query
Auction : New round
Reply : None

CMD : All other
Action : Remain in arbitrate
 Reply : None

CMD:None within time T2
Action : Return to arbitrate
Reply : None.

NEW ROUND
CMD : Query[mismatched

 inventoried or SL flags]
Reply : None

NEW ROUND
CMD : Query[slot>0 & matching

 (inventoried or SL) flags]
Reply : None

NEW ROUND
CMD : Query[slot=0 & matching

 (inventoried or SL) flags]
Reply : New RN16

CMD : QueryRep, QueryAdjust[slot<>0]
Reply : None

CMD : QueryAdjust, QueryRep [slot=0]
Reply : New RN16

CMD : QueryAdjust[slot=0]
Reply : New RN16

CMD : ACK[valid RN16]
Reply : PC, EPC, CRC-16
CMD : Req_RN[invalid RN16]
Reply : None

CMD : ACK[valid RN16]
Reply : PC, EPC, CRC-16

Slot
Counter

Query
QueryRep

QueryAdjust
Slot

Figure 2. State diagram of Gen 2 protocol

If multiple tags reply in step (a) the reader, by detecting and
resolving collisions at the waveform level, can resolve an RN16
from one of the tags, and the reader can ACK the resolved tag.
Unresolved tags receive erroneous RN16s and return to the
Arbitrate state without backscattering their PC, EPC, and CRC-
16. If the reader sends a valid ACK (i.e. an ACK containing the
correct RN16) to the tag in the Acknowledged state, the tag shall
re-backscatter its PC, EPC, and CRC-16. At any point the reader
may issue a NAK, all tags in the inventory round return to
arbitrate without changing their inventoried flag.

After issuing a Query command to initiate an inventory round,
the reader typically issues one or more QueryAdjust or
QueryRep commands. Tags that receive a QueryAdjust
command first adjust Q value (increment, decrement, or leave
unchanged), then pick a new random value and load this value
into their SC. Tags that pick a nonzero value transition to the
Arbitrate state and await a QueryAdjust or QueryRep command.

 3

Tags in the Arbitrate state decrement their SC every time they
receive a QueryRep, transitioning to the Reply state and
backscattering an RN16 when their SC reaches 0000h. Tags
whose SC reached 0000h, who replied, and who were not
acknowledged shall return to the Arbitrate state with a slot value
of 0000h and shall decrement this slot value from 0000h to
7FFFh at the next QueryRep, thereby effectively preventing
subsequent replies until the tag loads a new random value into its
SC. Tags shall reply at least once in (0, 2Q-1) QueryRep
commands[5].

Gen 2 scenarios for the simulation
In this paper, we consider two scenarios shown in Figure 3. The
first proposed scenario, TYPE 1, uses the QueryAdjust
command when there is the collision after the reader’s ID
request command. Therefore all the tags receiving the
QueryAdjust command from the reader select their new SC. All
other procedures comply with the basic rules of Gen 2 protocol.
The second scenario, TYPE 2, employs the QueryRep command
in which all the tags receiving QueryRep command decrement
their SC by 1.

Send Select command
(select all tags)

Send Query command
(Q=4)

START

Collision

Slot status ?

Idle Successful

A

Qfp=Qfp+c
(c=0.1 ~ 0.5)

Qfp=Qfp-c
(c=0.1 ~ 0.5)

If Qfp – Q > 1 If Q – Qfp > 1

Send QueryAdjust
(Q=Q-1)

Y Y

Send QueryRepSend QueryAdjust

TYPE1

TYPE2

A

Send QueryRep Send QueryAdjust
(Q=Q+1)

Figure 3. Procedure of the proposed scenarios

We also applied the Q-selection algorithm recommended by Gen
2 protocol. A reader uses for setting the slot-count parameter Q
in a Query command. Qfp is a floating-point representation of Q;

a reader rounds Qfp to an integer value and uses it as a criterion
for determining whether to send the QueryAdjust command. The
granularity, c value, used in Q-selection algorithm is 0.5 when
1<Q<5, 0.3 when 6<Q<10, and 0.1 when 11<Q<15[5].

OPNET Gen2 Model

For the simulation, we created all nodes in OPNET simulator
and employed system parameters shown in Table 1.

Table 1. Simulation parameters

Gen 2 Parameters Values
Preamble 87.5 µs
R->T Data Rate 80 KHz
T-> R Data Rate 320KHz
Tari 12.5 µs
RTcal 18.75 µs
TRcal 25 µs

Figure 4 shows the process model of a reader we created. The
description of each state is as follows.

INIT state: In this state, the state variables used in the entire
process are initialized.

SELECT state : In SELECT state, a reader selects the specific
groups of tags and sets the inventory flag based on the criteria.

Query state : In Query state, a reader selects one of the
designated groups and starts the inventory round.

IDLE state : In IDLE state, a reader waits an incoming event.
The event can be either an incoming packet or the expiration of
the clock timer.

REP_IDLE state : A reader moves to REP_IDLE state when
the clock timer is expired. In REP_IDLE state, a reader transfers
QueryRep commands.

REP_COLL state : A reader moves to REP_COLL state when
the collision occurs in the communication link. In REP_COLL
state, a reader can transfer either the QueryRep command or
QueryAdjust command depending on the criteria.

REP_PROC state : A reader moves to REP_PROC state when
the packet arrives without collision. In REP_PROC state, a
reader proceeds with the following processes. If the reader
receives RN16 from a tag without collision, the reader transfers
the ACK command which lets the tag send its EPC. If the reader
receives EPC, then it saves EPC before sending the QueryRep
command.

 4

Figure 4. Process model of a reader

Figure 5 shows the process model of a tag we built. The
description of each state is as follows.

INIT state: In this state, the state variables used in the entire
process are initialized.

IDLE state: In IDLE state, a tag waits for the packets incoming
from the reader.

RX state : A tag moves to RX state when the packet arrives
from the reader without collision. A tag responds to the reader’s
commands based on the criteria.

Figure 5. Process model of a tag

Bit-Error Model
In this paper, we employed the basic error model, dbu_error,
used in bus link error model in OPNET simulator. Although the
communication link between a reader and tags is wireless, we
implemented the simulator based on the bus topology because of
easy and quick implementation. The algorithm used by
dbu_error to compute the number of bit errors in a packet
utilizes the Equation (1) which is the probability that exactly k
errors correspond to a number of different arrangements of the
bits in the packet. After random number generation between 0
and 1, if the random number is less than this probability, yet
higher than the probability of occurrence of the previous number
of bit errors, then 1 is the number of bits errors allocated to the
packet. The algorithm continues iterating in this manner until a
value k is found for which the probability of k or fewer errors
occurring is greater than the initial random number. Then the
number of errors assigned to the packet is k.

(1) .k N k

k

N
P p p

k
−= ⋅ ⋅ −

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (1)

Where, N and p mean the packet length and the bit error
rate(BER) respectively.

Simulation Results
We evaluated the performance of the Gen 2 protocol with an
erroneous environment. The number of tags is from 20 to 200 by
20 and all simulations are run 20 times per scenario. The BER in
communication link was configured as 0, 10-4, 10-3, and 10-2.
The metrics we used include Accuracy, Identification time, and
Identification rate as follows.

Accuracy(%) : The ratio of the number of identified tags to the
total number of tags

Identification time(ms) : Time taken to identify the total
number of tags.

Identification rate(tags/sec): Number of tags identified per
second.

Figure 6 shows the accuracy for the number of tags. In Figure 6,
T1_3_e2 means that the type of the scenario is Type 1 in which
scenario the range of the c value has 3 steps; the c value is 0.5
when 1<Q<5, 0.3 when 6<Q<10, or 0.1 when 11<Q<15, and the
BER is 10-2. Irrespective of the scenarios, when using the same
BER the accuracy is similar. When the BER is 10-2, the accuracy
is about from 37% to 40%. In case that the BER is 10-3, the
accuracy is about 89% to 91%. Meanwhile in an environment
that the BER is less than 10-4, the accuracy is almost 100%.

0%

20%

40%

60%

80%

100%

120%

20 40 60 80 100 120 140 160 180 200
Nu mb e r o f t a g s

A
cc

ur
ac

y(
%

)
d

fd
f

T1_3_e0 T1_3_e2 T1_3_e3 T1_3_e4
T2_3_e0 T2_3_e2 T2_3_e3 T2_3_e4

Figure 6. Accuracy vs. number of tags

 5

Figure 7 represents identification time versus the number of tags.
Each scenario shows similar performance, when the number of
tags is small. However, in case that the number of tags is more
than about 80, the performance of T1_3_e2 and T2_3_e2 is
getting worse. When the number of tags is 200, T1_3_e2 is
almost 2.5 times higher than the result of others(except for
T2_3_e2).

0

200

400

600

800

1000

1200

20 40 60 80 100 120 140 160 180 200

Nu mb e r o f t a g s

Id
en

ti
fi

ca
ti

o
n

ti
m

e(
m

s)
d

d

T1_3_e0 T1_3_e2 T1_3_e3 T1_3_e4
T2_3_e0 T2_3_e2 T2_3_e3 T2_3_e4

Figure 7. Identification time vs. number of tags

Figure 8 represents the identification rate for the types of
scenarios. When the BER is less than 10-2, the identification rate
is around 500 tags(max. 535 tags) per second. In case that the
BER is10-3, T1_3_e2 identifies 197 tags per second and T2_3_e2
identifies 360 tags per second. It is also shown that regardless of
the BER, the performance of Type 2 is always better than Type 1.

Figure 8. Identification rate vs. types of scenarios

Conclusion
In this paper, we evaluated the performance of Gen 2 protocol
with an erroneous environment. The range of the number of tags

is from 20 to 200 with incremental value being 20. The BER in
communication link was configured as 0, 10-4, 10-3, and 10-2. For
the performance evaluation, we used the three metrics; Accuracy,
Identification time, and Identification rate. According to the
simulation, when the BER is 10-2, the accuracy is about 40 %
and when the BER is less than 10-3, the accuracy is more than
about 90%. Therefore, for the efficient communication in RFID
system, BER less than at least 10-3 is needed. And, in an
environment that the BER is less than 10-3, a reader can identify
about 500 tags per second. Finally, it is shown that regardless of
the BER, Type 2 which is the algorithm using QueryRep
command is always better than Type 1 which is the algorithm
using QueryAdjust command.

References
[1]S. A. Weis, S. E. Sarma, R. L. Rivest, and D. W. Engels,
"Security and Privacy Aspects of Low-Cost Radio Frequency
Identification Systems," in Proc. IEEE SPC’03, Mar. 2003.

[2]M. Jaoccurt, A. Ehrsam, and U. Gehrig, "Contact-less
Identification Device With Anti-collision Algorithm," in Proc.
IEEE CSCC’99, Athens, Jul. 1999, pp. 269-273.

[3]K. Finkenzeller, RFID Handbook ; Fundamentals and
applications in Contact-less Smart Cards and Identification,
Second Edition, John Wiley & Sons Ltd, pp. 195-219, 2003.

[4]J. R. Cha and J. H. Kim, "Performance Evaluation of
EPCglobal Generation 2 protocol in an RFID system," in Proc.
KICS’06 fall, Jeju, Jul. 2006, p. 630.

[5]EPCglobal., Epc. Radio-frequency identity protocols class-1
generation-2 uhf rfid protocol for communications at 860 mhz-
960 mhz version 1.0.9., 2005.

