Collision Avoidance through Multiple RTS/CTS Dialogue in RFID System

200

ICUIMC 2008, Sungkyunkwan Univ.

Jan. 31, 2008

Jae-Ryong Cha and Jae-Hyun Kim

Wireless Information aNd Network Engineering Research Lab. Ajou University, Korea

Contents

- Problem Statements
- Related Works
- Proposed Scheme
- Simulation Experiments
- Simulation Results
- Conclusion
- Reference

Problem Statements

- Two kinds of interference in RFID system ^[1]
 - Reader-to-tag interference

Ajou University

- When a reader sends commands to the tags
- Reader-to-reader interference
 - When a tag responds to the reader's command
- Hidden node and collision problem

Hidden node and collision problem in RFID system

3

156

Jae-Ryong Cha

Related Works (1/2)

LBT(Listen Before Talk) ^{[2],[3]}

CSMA-based

- Sense the channel before communicating with tags
 - If not busy, then
 - Try to communicate with tags
 - If busy, then
 - Either sense another channel or re-sense the current channel after back off

Control

Data

Channe

Reader 1

Reader - Tag Communication

- Cons.
 - The reader may not be able to detect collision by carrier sensing alone

PULSE protocol [1]

CSMA-based

- Two separate channels used
 - One for broadcasting beacon signal
 - For informing other readers of own channel usage
 - The other for communicating with tags

4 157

Cons.

- Two radios needed
- Decrease of channel efficiency because of the collision in the control
 - channel

Reader 2

Reader – Tao

Communication

Time

Related Works (2/2)

Colorwave ^[4]

- TDMA-based
 - Distributed protocol
 - Each reader has the different value of *max_color*
 - Before communicating with tags, select its own color (slot)
 - Cons.
 - Additional synchronization and collision detection mechanism needed
 - Potential collision may be occurred

Proposed Scheme

Main ideas

- **Channel reservation**
 - Use RTS/CTS dialogue
 - But not same with the method used in the literature
 - RTS/CTS packet informs other readers of only its identity information
 - RTS/CTS packets not including NAV information
 - Only 1 byte size of RTS/CTS packed employed

Collision Avoidance

- Use multiple RTS/CTS dialogue
 - After sending a RTS packet, if there is no response (either idle or collision)
 - Send a RTS packet after the random delay based on the RTS CNT TH

159

Proposed Scheme

Simulation Environments

Simulator

• **OPNET 10.0**

Performance metric

Aggregated throughput = $\frac{\text{Total successful reading time}}{\text{Total simulation time}}$

Simulation parameters

SIMULATION PARAMETERS	VALUES USED
Network size	1 km x 1km square grid
Simulation run time	Each 10 minutes
Minimum Fixed listen time (T_wait)	5 ms ^[5]
Maximum back-off window size	256, 512, 1024
Back-off mini-slot duration	1 <i>ms</i>
Maximum random delay size	8
Random delay mini-slot duration	10 <i>us</i>
Maximum reading time	1 <i>s</i>
Number of readers	16, 32, 48, 64, 96
Value p in p-persistent CSMA	0.01

Simulation Results(1/2)

Aggregated Throughput vs. number of readers

9

162

Ajou University

Simulation Results(2/2)

Aggregated Throughput vs. window size

10 163

Ajou University

Conclusion

- Interference in RFID system
 - Reader-to-tag interference
 - Reader-to-reader interference
- Proposed collision avoidance scheme
 - Multiple RTS/CTS exchange
 - To reserve the channel
 - To reduce or eliminate the collision
 - Simulation results
 - Proposed scheme outperforms the conventional protocols
 - *p*-persistent CSMA and the PULSE protocol
 - Because of the lower collision probability through the multiple RTS/CTS dialogue.

Reference

- [1] S. M. Birari and S. Iyer, "PULSE: A MAC Protocol for RFID Networks," in Proc. USN'2005, Nagasaki, Japan, Dec., 2005.
- [2] ETSI EN 302 208-1 v1.1.1, September 2004. CTAN: http://www.etsi.org.
- [3] ETSI EN 302 208-2 v1.1.1, September 2004. CTAN: <u>http://www.etsi.org</u>.
- [4] J. Waldrop, D. W. Engels, and S. E. Sarma., "Colorwave: An Anti-collision Algorithm for the Reader Collision Problem," in *Proc.* WCNC'03, New Orleans, Louisiana, USA, Mar., 2003.
- [5] ETSI TS 102 562 v1.1.1, March 2007. CTAN: http://www.etsi.org.
- [6] J. R. Cha and J. H. Kim, "Dynamic Framed Slotted ALOHA Algorithm using Fast Tag Estimation method for RFID System," in *Proc.* CCNC2006, Las Vegas, USA, Jan., 2006.

Thank you!!

Any Questions ??

Jae-Ryong Cha

Acknowledgement

- "This research was supported by a grant(07-CIT-A02: Standardization Research for Construction Materials) from Construction Infrastructure Technology Program funded by Ministry of Construction & Transportation of Korean government."
- "This research was supported by the MIC(Ministry of Information and Communication), Korea, under the ITRC(Information Technology Research Center) support program supervised by the IITA(Institute of Information Technology Advancement)" (IITA-2007-(C1090-0701-0003)).