소형셀 환경에서 캐시 적중률에 따른 캐시 업데이트 주기변경 알고리즘

정현기, 천혜림, 이승규*, 김재현 아주대학교 전자공학과. *한국전자통신연구워

happy8076@ajou.ac.kr, hyerimn1@ajou.ac.kr, *sqlee@etri.re.kr, jkim@ajou.ac.kr

Caching Update Algorithm based on Cache Hit Ratio in Small Cell Environments

Hyun-Ki Jung, Hye-Rim Cheon, Seung Que Lee*, Jae-Hyun Kim Dept. of ECE, Ajou University, *ETRI.

요 약

본 논문에서는 enterprise/urban 소형셀 환경에서 적용 가능한 캐시 방법을 제안하였다. 사용자의 특성을 반영하기 위해 사용자들을 그룹화 하였고, 캐시 적중률 증가를 위해 각그룹의 캐시 적중률이 기준값 이하로 낮아 질 경우 업데이트 주기를 감소시켜 새로운 컨텐츠를 신속히 캐시에 저장하도록 하였다. 이를 통해 업데이트 주기가 일정할 경우에 비해 최대 10%의 캐시 적중률 증가를 확인하였다.

I. 서 론

최근 급증하는 모바일 데이터 트래픽 수용을 위해 소형셀 기술이 주목 받고 있고, 이에 따라 세계의 통신 사업자들은 소형셀 배치를 통한 모바일 데이터 트래픽수용에 집중하고 있다[1]. 하지만 소형셀 배치를 통한 급증하는 모바일 데이터 트래픽 수용은 코어망의 트래픽수용능력이 뒷받침 되어야 한다. 따라서 코어망 부하감소를 위한 방법들이 제시되고 있으며 코어망 부하감소를 위한 방법 중 하나로 소형셀 내부에 저장 공간을위치시켜 소형셀 사용자의 웹 데이터 트래픽을 캐시하는 소형셀 캐시 기술에 대한 연구가 진행 중이다[2]-[4]. 기존의 연구에서는 소형셀 사용자 특성을 반영하지 않고컨텐츠의 효율적 배치를 목적으로 하고 있으며, 사용자특성을 반영한 [4]의 경우 home 소형셀 환경만을가정하였다는 점에서 한계가 존재한다.

따라서 본 논문에서는 enterprise/urban 소형셀 환경에서 사용자 그룹화를 통해 다수의 사용자 특성을 반영하고자 한다. 캐시 적중률 향상을 위해 그룹별 캐시 적중률에 따라 각 그룹의 컨텐츠 업데이트 주기를 달리하는 방법을 제안한다. 또한 mobile edge computing 개념을 적용하여 캐시 저장공간을 소형셀 내부가 아닌다수의 소형셀에 서비스를 제공 할 수 있는 edge server 에 위치하도록 한다[5]. 성능 분석을 위해 실제네이버 인기 검색어를 수집하였고 이를 통해 컨텐츠업데이트 주기가 일정 할 경우 대비 제안한 방법의 캐시적중률 향상을 보이고자 한다.

Ⅱ. 제안하는 소형셀 캐시 방법

본 논문에서 제안하는 소형셀 캐시 방법은 그림 1 의 flow chart 로 나타낼 수 있으며 사용자 그룹화 및 캐시용량 할당 단계와 캐시 업데이트 단계로 나눠 질 수 있다. 사용자 그룹화 및 캐시용량 할당 단계에서는 사용자가 직접 입력한 자신의 특성 또는 edge server 의

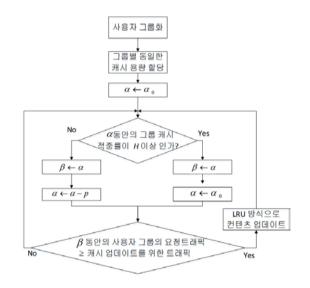


그림 1. 제안하는 소형셀 캐시 방법 flow chart

사용자 웹 트래픽 분석을 통해 얻은 사용자 특성에 기반하여 사용자를 그룹화 한 뒤 사용자 그룹별로 동일한 크기의 저장공간을 할당한다.

다음으로 캐시 업데이트 단계이다. 캐시 저장 공간에 저장된 그룹 별 컨텐츠는 LRU(Least Recently Used) 방식으로 컨텐츠 업데이트 주기(α)마다 새로운 인기컨텐츠로 업데이트 된다. 하지만 사용자 그룹의 캐시 적중률이 일정 기준값(H)이하로 낮아 질 경우, 신속히 새로운 컨텐츠를 저장하기 위해 컨텐츠 업데이트 주기를 초기 컨텐츠 업데이트 주기(α)에서 p 만큼 감소시킨다. α -p 시간이 지난 후 다시 캐시 적중률을 확인하여 H 이하로 낮을 경우 다시 p 만큼 감소시키며 캐시 적중률이 H 이상이 될 경우 컨텐츠 업데이트 주기는 α -로 변경한다. 단, 불필요한 트래픽 발생을 줄이기 위해 사용

표 1. 성능 분석 파라미터

Parameters	Values
소형셀 수	4
사용자 그룹 수	4
검색 확률	1 ~ 10 위 검색어 : 56.64% 11 ~ 100 위 검색어 : 43.36%
사용자의 평균 컨텐츠 요청 횟수	59.6 회
초기 캐시 업데이트 주기 (α _ο)	3 시간
업데이트 주기 감소량 (<i>p</i>)	1 시간
총 캐시 저장 용량	416 Mbyte

자 그룹의 요청 트래픽량과 컨텐츠 업데이트를 위한 트래픽량을 비교하여 사용자 그룹의 요청 트래픽량이 컨텐츠 업데이트를 위한 트래픽량보다 작을 경우 업데이트를 수행하지 않도록 한다.

Ⅲ. 성능 분석

성능 분석을 위해 국내 포탈 서비스 중 86% (2015 년 12 월 31 일 기준)의 점유율을 차지하는 네이버 포탈 서비스에서 제공하는 그룹별 실시간 인기 검색어를 사용하였으며 2015 년 11 월 6 일부터 2015 년 11 월 15 일까지 총 10 일간 1 시간 간격으로 수집하였다. 사용자 그룹은 싱글남, 싱글녀, 대학생, 청소년 그룹이 존재한다고 가정하였다. 성능 분석에 사용한 파라미터는 표 1 과 같고 사용자는 1 ~ 100 위까지의 검색어만 검색한다고 가정하였다[4]. 성능 지표로는 각 그룹별 캐시 적중률을 비교하였고 업데이트 주기를 변경하지 않은 경우와 캐시 적중률에 따라 업데이트 주기를 변경한 경우의 평균 캐시 적중률을 비교하였다.

그림 2 는 캐시 적중률 기준값인 H에 따른 각 그룹별 캐시 적중률을 나타낸다. H 값이 증가함에 따라 캐시업데이트 주기가 감소하여 새로운 컨텐츠를 빠르게 캐시에 저장되어 모든 그룹의 캐시 적중률이 증가하는 것을 확인 할 수 있다. 또한 분석 결과 H 값이 이에서 100 으로 증가하였을 때 싱글남, 싱글녀의 평균 캐시 적중률 증가는 11.5%로 청소년, 대학생 그룹의 평균 캐시 적중률 증가는 11.5%로 청소년, 대학생 그룹의 평균 캐시 적중률 증가을인 6.5%보다 높은 것을 확인할수 있다. 이는 싱글남, 싱글녀 그룹은 대학생, 청소년 그룹에 비해 다양한 사용자가 포함될 수 있으며 그로인해 인기 검색어의 종류가 다양해져 인기 검색어의 매시간 변화가 대학생, 청소년 그룹에 비해 크기때문이다.

그림 3 은 H 에 따른 모든 그룹의 평균 캐시 적중률과 캐시 업데이트 주기가 일정한 경우의 평균 캐시 적중률을 나타낸다. 분석 결과 캐시 업데이트 주기를 변경한 경우, 업데이트 주기가 일정한 경우 대비 최대 10%의 캐시 적중률 증가를 확인할 수 있었고, 이를 통해 캐시 적중률에 따라 캐시 업데이트 주기를 변경할 경우더 높은 캐시 적중률을 얻을 수 있음을 확인하였다.

Ⅳ. 결론

본 논문에서는 여러 소형셀로 구성될 수 있는 enterprise/urban 소형셀 환경에서 사용자의 특성을 반영한 캐시 방법을 제안하였다. 다수의 사용자의 특성을 반영하기 위해 사용자의 특성에 기반하여 사용자들을 그룹화 하였고, 각 그룹별 인기 컨텐츠를 예측하여 캐시에 저장하였다. 또한 캐시 적중률 증가를 위해 각 그룹의 캐시 적중률이 기준값 이하로 낮아 질 경우업데이트 주기를 감소시켜 새로운 컨텐츠를 신속히 캐시에 저장하였다. 이를 통해 업데이트 주기가 일정할경우에 비해 최대 10%의 캐시 적중률의 증가를 확인하였다.

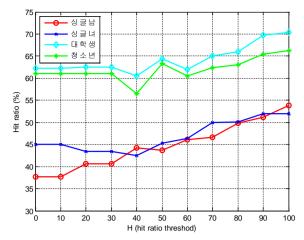


그림 2. 그룹별 캐시 적중률

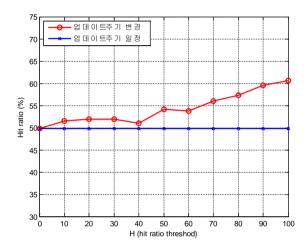


그림 3. 평균 캐시 적중률

ACKNOWLEDGMENT

본 연구는 미래창조과학부의 정부출연금사업[15ZI1110, 트 래픽 용량 증대를 위한 액세스 네트워크 원천기술 연구] 및 2014 년도 정부(미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2014R1A2A2A0100 2321)

참 고 문 헌

- [1]나지현, 김경숙, 권동승, 정현규, "LTE 기반 소형셀기지국 기술 동향," 전자통신동향분석 제 30 권 제 1 호, 2015 년 2월.
- [2]J. N. Shim, B. Y. Min, K. Kim, and D. K. Kim, "Advanced femto caching file placement technique for overlapped helper coverage," in *Proc. VTC 2014 Spring*, May. 2014.
- [3]M. S. ElBamby, M. Bennis, and M Latva-aho, "Content aware user clustering and caching in wireless small cell networks," in *Proc. ISWCS 2014*, Aug. 2014.
- [4]정소이, 김재현, "소형셀 환경에서 코어망 오프로딩을 위한 캐시 알고리즘," 전자공학회논문지, 제 51 권 3 호, pp.32-38, 2015 년 3 월.
- [5]ETSI, "Mobile edge computing-Introductory technical white paper," Sep. 2014.